MATH 124B: HOMEWORK 4

Suggested due date: September 5th, 2016

(1) Show that the solution of the Poisson problem

$$
\begin{cases}\Delta u=f & \text { in } D \\ u=h & \text { on } \partial D\end{cases}
$$

is given by

$$
u\left(x_{0}\right)=\iint_{\partial D} h(x) \frac{\partial G\left(x, x_{0}\right)}{\partial n} d S+\iiint_{D} f(x) G\left(x, x_{0}\right) d V
$$

(2) Show that the Green's function solution of the Dirichlet problem in 2 dimensions

$$
\begin{cases}u_{x x}+u_{y y}=0 & \text { in } x^{2}+y^{2}<a^{2} \\ u=h & \text { on } x^{2}+y^{2}=a^{2}\end{cases}
$$

Using the Green's function

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \log \left|\mathbf{x}-\mathbf{x}_{0}\right|-\frac{1}{2 \pi} \log \left(\frac{r_{0}}{a}\left|\mathbf{x}-\mathbf{x}_{0}^{*}\right|\right) .
$$

(3) Notice that the function $x y$ is harmonic in the half-plane $\{y>0\}$ and vanishes on the boundary $\{y=0\}$. The function 0 has the same properties. Does this mean that the solution is not unique? Explain.
(4) Show that for $\mathbf{x}_{0}=0$ on the three dimensional sphere, the Green's function is given by

$$
G(\mathbf{x}, 0)=-\frac{1}{4 \pi\|\mathbf{x}\|}+\frac{1}{4 \pi a}
$$

(5) Find the Green's function for the half-ball $D=\left\{x^{2}+y^{2}+z^{2}<a^{2}, \mid z>0\right\}$.

Solution

(1) We can show the integral representation formula for u such that $\Delta u=f$, as
$u\left(\mathbf{x}_{0}\right)=\frac{1}{4 \pi} \iint_{\partial D}-u(\mathbf{x}) \frac{\partial}{\partial n}\left(\frac{1}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}\right)+\frac{1}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|} \frac{\partial u}{\partial n} d S-\frac{1}{4 \pi} \iiint_{D} \frac{f}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|} d V$
Define the harmonic function $H:=H+\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}$, apply this to Green's second identity, then add to the integral representation formula to obtain the solution.
(2) Let $\rho=\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$ and $\rho^{*}=\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|$. We compute the normal derivative,

$$
\nabla G=\frac{\nabla \rho}{2 \pi \rho}-\frac{\nabla \rho^{*}}{2 \pi \rho^{*}}
$$

where $\nabla \rho=\frac{\mathbf{x}-\mathbf{x}_{0}}{\rho}$ and $\nabla \rho^{*}=\frac{\mathbf{x}-\mathbf{x}_{0}^{*}}{\rho^{*}}$. Since $n=\frac{\mathbf{x}}{a}$,

$$
\begin{aligned}
\frac{\partial G}{\partial n} & =\nabla G \cdot n \\
& =\frac{\mathbf{x}-\mathbf{x}_{0}}{2 \pi \rho^{2}} \cdot \frac{\mathbf{x}}{a}-\frac{\left(\mathbf{x}-\mathbf{x}_{0}^{*}\right)}{2 \pi\left(\rho^{*}\right)^{2}} \cdot \frac{\mathbf{x}}{a} \\
& =\frac{a^{2}-\left\|\mathbf{x}_{0}\right\|^{2}}{2 \pi a \rho^{2}}
\end{aligned}
$$

where we used the fact that $\mathbf{x}_{0}^{*}=\frac{a^{2} \mathbf{x}_{0}}{\left\|\mathbf{x}_{0}\right\|^{2}}$ and $\rho^{*}=\frac{a}{\left\|\mathbf{x}_{0}\right\|^{2}} \rho$ for $\|\mathbf{x}\|=a$. Inserting this into the Green's integral representation gives us exactly the Poisson formula for the disk in 2 dimensions.
(3) We need to assume either the domain is bounded or the function is bounded as $\|\mathbf{x}\| \rightarrow \infty$ for uniqueness.
(4) We start with the Green's function for the three dimensional sphere given by

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}+\frac{a}{4 \pi\left\|\mathbf{x}_{0}\right\|\left\|\mathrm{x}-\mathbf{x}_{0}^{*}\right\|}
$$

We need to show that $\lim _{\mathbf{x}_{0} \rightarrow 0} G\left(\mathbf{x}, \mathbf{x}_{0}\right)=G(\mathbf{x}, 0)$. The only issue we may have is the second term, hence we bound for both sides

$$
\left|\|\mathbf{x}\|\left\|\mathbf{x}_{0}\right\|-a^{2}\right| \leq\left\|\mathbf{x}_{0}\right\|\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\| \leq\|\mathbf{x}\|\left\|\mathbf{x}_{0}\right\|+a^{2}
$$

By squeeze theorem, we have $\lim _{\mathbf{x}_{0} \rightarrow 0}\left\|\mathbf{x}_{0}\right\|\left\|\mathrm{x}-\mathbf{x}_{0}^{*}\right\|=a^{2}$, which gives us the result.
(5) Define the reflection about the z axis given by

$$
\tilde{\mathbf{x}}=(x, \tilde{y}, z)=(x, y,-z)
$$

By reflecting about the z-axis, we get a Green's function which satisfies the harmonic conditions and vanishes on the boundary, consisting of the upper half sphere and the $z=0$ disk. That is

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=-\frac{1}{4 \pi\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}+\frac{a}{4 \pi\left\|\mathbf{x}_{0}\right\|\left\|\mathbf{x}-\mathbf{x}_{0}^{*}\right\|}+\frac{1}{4 \pi\left\|\mathbf{x}-\tilde{\mathbf{x}_{0}}\right\|}-\frac{a}{4 \pi\left\|\tilde{\mathbf{x}}_{0}\right\|\left\|\mathbf{x}-\tilde{\mathbf{x}_{0}}\right\|} .
$$

